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Spatial-temporal correlations in the process to self-organized criticality
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A different type of spatial-temporal correlation in the process approaching the self-organized criticality is
investigated for the two simple models for biological evolution. The changed behaviors of the position with
minimum barrier are shown to be quantitatively different in the two models. Different results of the correlation
are given for the two models. We argue that the correlation can be used, together with the power-law distri-
butions, as criteria for self-organized criticality.

PACS number~s!: 87.10.1e, 05.40.2a, 64.60.Ak
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The phenomenon of ‘‘self-organized criticality’’~SOC!,
with potential applications ranging from the behavior
sandpile and the description of the growth of surfaces
generic description of biological evolution, has become a
topic of considerable interest@1–8#. It is observed that the
dynamics of complex systems in nature does not follow
smooth, gradual path, instead it often occurs in terms
punctuations, or ‘‘avalanches’’ in other word. The appe
ance of the spatial-temporal complexity in nature, contain
information over a wide range of length and time scale, p
sents a fascinating but longstanding puzzle. Such comple
also shows up in simple mathematical models for biologi
evolution and growth phenomena far from equilibrium.
former studies, power-law distributions for the spatial s
and lifetime of the ‘‘avalanches’’ have been observed
various complex systems and are regarded as ‘‘fingerprin
for SOC. It seems that there is no general agreement o
suitable definition of SOC@9,10#, although a minimal defi-
nition was given in@11#. Because there is no universal
accepted ‘‘black-box’’ tests for the presence or absence
SOC based solely on observables, systems with a wide ra
of characteristics have all been designated as ‘‘self-organ
critical.’’

While numerous numerical studies have claimed SOC
occur in specific models, and although the transition to
SOC state was studied in@12–14#, a question has never bee
answered: How is the process approaching to the final
namical SOC attractor characterized? One may even
whether the phenomenon SOC can be adequately chara
ized by such power-law distributions. The answer to the
ter question seems to be negative, as concluded in@15#. In
Ref. @15# were pointed out ‘‘some striking observable diffe
ences between two ‘self-organized critical’ models wh
have a remarkable structural similarity.’’ The two models,
called the Bak-Sneppen~BS! models, are introduced in@16–
18# and are used to mimic biological evolution. The mod
involve a one-dimensional random array onL sites. Each site
represents a species in the ‘‘food chain.’’ The random nu
ber ~or barrier! assigned to each site is a measure of
‘‘survivability’’ of the species. Initially, the random numbe
for each species is drawn uniformly from the interval~0, 1!.
In each update, the least survivable species~the update cen-
ter! and some others undergo mutations and obtain new
dom numbers which are also drawn uniformly from~0, 1!. In
PRE 611063-651X/2000/61~6!/7243~3!/$15.00
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the first version of the model~the local or nearest-neighbo
model!, only the update center and its two nearest neighb
participate the mutations. In the second version,K21 other
sites chosen randomly besides the update center are invo
in the update and assigned new random survivabilities~so
this version is called random neighbor model!. Periodic
boundary conditions are adopted in the first model.
shown in @18–20#, the second version is analytically solv
able. Investigation in@15# shows that some behaviors of th
local and random neighbor models are qualitatively identic
They both have a nontrivial distribution of barrier heights
minimum barriers, and each has a power-law avalanche
tribution. But the spatial and temporal correlations betwe
the minimum barriers show different behaviors in the tw
models and thus can be used to distinguish them.

In all the studies mentioned above, spatial and/or tem
ral distributions of the ‘‘avalanches’’ and correlations b
tween positions with minimum of barriers are investigat
separately. As shown in many studies, however, spa
and/or temporal distribution of the ‘‘avalanches’’ alone ca
not be used as a criterion for SOC, nor can the spatia
temporal correlation do. In this Brief Report, we attempt
study a different kind of correlation between minimum ba
riers in the process of the updating in the two models
biological evolution. The correlation between the positio
with minimum barriers at time~or update! s and s11 is
investigated. Since the correlation involvestwo sitesat dif-
ferent times, it is of spatial-temporal type. Thus it may b
suitable for the study of spatial-temporal complexity.

Consider the update process of the local neighbor mo
Initially, each site is assigned a random number. All the r
dom numbers are drawn uniformly from interval~0,1!. De-
noteX(s) the site number with minimum barrier afters up-
dates. The sites can be numbered such that 1<X(s)<L. To
see howX(s) changes in updating process in the modelX(s)
is shown in Fig. 1 as a function ofs for an arbitrary update
process for lattice sizeL5200 with s from 1 to 2000. The
lower part of Fig. 1 is a zoomed part of the upper one
small s. It is clear thatX(s) seems to be random whens is
small. With the going-on of updating,X(s) becomes more
and more likely to be in the neighborhood of last upda
center,X(s21). So there appear some plateaulike parts
Fig. 1. In other words, there appears to be some correla
betweenX(s) when the system is self-organized to approa
the criti-
7243 ©2000 The American Physical Society
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cal state. So, it may be fruitful to study the self-correlation
X(s) in searching quantities characterizing the process
SOC. For this purpose, one can define a quantity

C~s!5^X~s!X~s11!&2^X~s!&^X~s11!&, ~1!

with average over different events of updating. Obviously
there is no correlation between the sites with minimum b
rier at time s and s11, or ^X(s)X(s11)&5^X(s)&^X(s
11)&, C(s) will be zero. Thus,C(s) can show whether
there is correlation betweenX(s) and also give a measure o
the strength of the correlation. Because of the randomnes
the survivability at each site,X(s) can be 1,2, . . . ,L with

FIG. 1. The change of siteX(s) with time s for an arbitrary
event in the nearest neighbor version of the BS model for biolog
evolution.

FIG. 2. The correlation functionC(s) as a function ofs for
lattice sizeL550, 100, and 200 for the same model as in Fig. 1
f
to

f
r-

of

equal probability, 1/L. Thus, ^X(s)&5(L11)/2 for every
time s. It should be pointed out that^X(s)&5(L11)/2 does
not mean any privilege of sites with numbering about~L
11!/2. In fact, all sites can be the update center with eq
chance at times if the update process is repeated many tim
from the initial state. Due to the randomness of the upda
survivability X(s11) can also take any integer from 1 toL.
However, the distribution ofX(s11) is peaked atX(s)
whens is large, see@13# for detail. With the update going on
the width of the distribution becomes more and more n
rower. When the width becomes narrow enough,^X(s)X(s
11)& will turn out to be ^X2(s)&5(2L213L11)/6. So,
C(s) will approach (L221)/12 for larges. In above defini-
tion for C(s), however, the neighboring relation betwee
X(s) andX(s11) cannot be realized once the numbering
the sites is given. Due to the periodic boundary conditio
adopted in the model, one of the nearest neighbors of the
with numbering 1 is the one numberedL. To overcome this
shortcoming, one can introduce anorientational shorter dis-
tanceD(s) betweenX(s) andX(s11). Imagine theL sites
with numbering 1,2, . . . ,L are placed on a circle in clock
wise order. ThenuD(s)u is the shorter distance between th
two sites on the circle. IfX(s11) is reached along the
shorter curve fromX(s) in clockwise direction,D(s) is posi-
tive. OtherwiseD(s) is negative. For definiteness, one c
assume2L/2<D(s),L/2. With D(s), one can use

X8~s11!5X~s!1D~s! ~2!

in place ofX(s11) in the definition ofC(s). SinceX8(s)
can cross the~nonexisting! boundary between 1 andL and

al

FIG. 3. Upper part: The change of siteX(s) with s for the
random neighbor version of the BS model for biological evolutio
Lower part: The correlation functionC(s) for the two versions as
functions ofs for L5200.
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reflect the neighboring relation withX(s), the effect of peri-
odic boundary conditions on the correlation can be taken
account.@In the simulation of the BS model numbering theL
sites with integer numbers 1,2, . . . ,L is necessary, but the
start position can be arbitrary. Different numbering sche
will give the same results forC(s), as physically demanded
This in return is also an indication of the equivalence of
sites in the presence of periodic boundary conditions.# To
normalize the dependence ofC(s) on the size of the one
dimensional array, we can renormalizeC(s) by (L221)/12.
In the following, we use a normalized definition ofC(s):

C~s!5
^X~s!X8~s11!&2^X~s!&^X8~s11!&

~L221!/12
. ~3!

In current studyX(s) and D(s) are determined from
Monte Carlo simulations, and 500 000 simulation events
used to determine the averages involved. For each ev
2000 updates are performed from an initial state with rand
barriers on the sites uniformly distributed in~0, 1!. The nor-
malized correlation functionC(s) is shown as a function ofs
in Fig. 2 for L550, 100, and 200. One can see thatC(s) is
a monotonously increasing function of times. As in our na-
ive consideration,C(s) is very small in the early stage o
updates and becomes larger and larger for largers, indicating
the increase of the strength of correlation between the s
with minimum barrier at different times. The behavior
C(s) with s exhibits different characteristics for small an
large s. C(s) increases withs very quickly for smalls, but
the rate becomes quite slow after a knee point. The k
point appears earlier for smallerL, showing the existence o
a finite-size effect. Also, the seemly saturating value ofC(s)
depends on the sizeL of the lattice, or more clearly, it in-
to
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creases with the lattice sizeL. Since only 500,000 simulation
events are used in current study, there shows the effec
fluctuations in the figure.

The correlation betweenX(s) can be investigated for the
random neighbor model for biological evolution in the sam
way. For simplicity only the case withK53 is taken into
account. The generalization to other cases is straightforw
First, one can have a look on howX(s) changes with update
X(s) is shown as a function ofs in the upper part of Fig. 3.
This plot may look as a random scatter of points at first sig
But it is not. A close look reveals correlations:X(s) often
has almost same value for several consecutive or almost
secutives values. However, no obvious plateaulike part c
be seen in the figure, showing the difference between the
versions of the BS model.C(s) is also studied and shown i
the lower part of Fig. 3 as a function ofs for the lattice size
L5200. In the random neighbor version of the BS mod
sites numbered with 1 andL are no longer neighbors. So, i
the calculation ofC(s) from Eq.~3!, X(s11) is used instead
of X8(s11). The counterpart for the nearest neighbor mo
is also drawn in the figure for comparison. One can see
the saturating value is much smaller than in the case of
local neighbor version of the model.

From the discussions above one can see that the cor
tion between the sites with minimum barrier may play
important role in investigating SOC. The power-law dist
butions for the size and lifetime of the ‘‘avalanches’’ to
gether with the different kind of correlation may be used
criteria for SOC.
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