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Spatial-temporal correlations in the process to self-organized criticality
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A different type of spatial-temporal correlation in the process approaching the self-organized criticality is
investigated for the two simple models for biological evolution. The changed behaviors of the position with
minimum barrier are shown to be quantitatively different in the two models. Different results of the correlation
are given for the two models. We argue that the correlation can be used, together with the power-law distri-
butions, as criteria for self-organized criticality.

PACS numbe(s): 87.10+e, 05.40-a, 64.60.Ak

The phenomenon of “self-organized criticalityf(SOCQ,  the first version of the moddthe local or nearest-neighbor
with potential applications ranging from the behavior of mode), only the update center and its two nearest neighbors
sandpile and the description of the growth of surfaces tdoarticipate the mutations. In the second versidr; 1 other
generic description of biological evolution, has become as &it€S chosen randomly besides the update center are involved
topic of considerable intere§L—8]. It is observed that the [N the update and assigned new random survivabilitses

dynamics of complex systems in nature does not follow fhis version is called random neighbor madePeriodic

smooth, gradual path, instead it often occurs in terms opoundary conditions are adopted in the first model. As
. . . shown in[18-20, the second version is analytically solv-
punctuations, or “avalanches” in other word. The appear-

. o " able. Investigation if15] shows that some behaviors of the
ance of the spatial-temporal complexity in nature, containin

i . - £l h and | Yocal and random neighbor models are qualitatively identical.
Information over a wide range of length and time scale, Pr€They both have a nontrivial distribution of barrier heights of
sents a fascinating but longstanding puzzle. Such complexity,inimum barriers, and each has a power-law avalanche dis-

also shows up in simple mathematical models for biologicalripytion. But the spatial and temporal correlations between
evolution and growth phenomena far from equilibrium. Inthe minimum barriers show different behaviors in the two
former studies, power-law distributions for the spatial sizemodels and thus can be used to distinguish them.
and lifetime of the “avalanches” have been observed in |n all the studies mentioned above, spatial and/or tempo-
various complex systems and are regarded as “fingerprintstal distributions of the “avalanches” and correlations be-
for SOC. It seems that there is no general agreement on taeen positions with minimum of barriers are investigated
suitable definition of SO{9,10], although a minimal defi- separately. As shown in many studies, however, spatial
nition was given in[11]. Because there is no universally and/or temporal distribution of the “avalanches” alone can-
accepted “black-box” tests for the presence or absence ofiot be used as a criterion for SOC, nor can the spatial or
SOC based solely on observables, systems with a wide rangemporal correlation do. In this Brief Report, we attempt to
of characteristics have all been designated as “self-organizegfudy a different kind of correlation between minimum bar-
critical.” riers in the process of the updating in the two models for
While numerous numerical studies have claimed SOC tdiological evolution. The correlation between the positions
occur in specific models, and although the transition to thevith minimum barriers at timgor updat¢ s ands+1 is
SOC state was studied fi2—14), a question has never been investigated. Since the correlation involviego sitesat dif-
answered: How is the process approaching to the final dyterenttimes, it is of spatial-temporal type. Thus it may be
namical SOC attractor characterized? One may even askiitable for the study of spatial-temporal complexity.
whether the phenomenon SOC can be adequately character- Consider the update process of the local neighbor model.
ized by such power-law distributions. The answer to the lat{nitially, each site is assigned a random number. All the ran-
ter question seems to be negative, as concludgd5h In  dom numbers are drawn uniformly from interv@,1). De-
Ref.[15] were pointed out “some striking observable differ- note X(s) the site number with minimum barrier afteup-
ences between two ‘self-organized critical’ models whichdates. The sites can be numbered such tlaX(s)<L. To
have a remarkable structural similarity.” The two models, assee howX(s) changes in updating process in the modéd)
called the Bak-SneppeiBS) models, are introduced 16— is shown in Fig. 1 as a function affor an arbitrary update
18] and are used to mimic biological evolution. The modelsprocess for lattice siz& =200 with s from 1 to 2000. The
involve a one-dimensional random arraylosites. Each site lower part of Fig. 1 is a zoomed part of the upper one for
represents a species in the “food chain.” The random numsmalls. It is clear thatX(s) seems to be random wheris
ber (or barriej assigned to each site is a measure of thesmall. With the going-on of updating{(s) becomes more
“survivability” of the species. Initially, the random number and more likely to be in the neighborhood of last update
for each species is drawn uniformly from the inter¢@| 1. center,X(s—1). So there appear some plateaulike parts in
In each update, the least survivable spe¢ike update cen- Fig. 1. In other words, there appears to be some correlation
ter and some others undergo mutations and obtain new raretweenX(s) when the system is self-organized to approach
dom numbers which are also drawn uniformly fr¢q 1). In the criti-
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FIG. 1. The change of sit¥(s) with time s for an arbitrary
event in the nearest neighbor version of the BS model for biological ) ) )
evolution. 0 500 1000 1500 2000
S

cal state. So, it may be fruitful to study the self-correlation of - 4 Upper part: The change of si¥(s) with s for the
X(s) in searching quantities characterizing the process t9,nqom neighbor version of the BS model for biological evolution.
SOC. For this purpose, one can define a quantity Lower part: The correlation functiofi(s) for the two versions as

functions ofs for L=200.
C(9)=(X(S)X(s+ 1)) —(X())(X(s+1)), (1)

equal probability, 1/. Thus, (X(s))=(L+1)/2 for every
with average over different events of updating. Obviously, iftime s. It should be pointed out thaX(s))=(L+1)/2 does
there is no correlation between the sites with minimum barnot mean any privilege of sites with numbering about
rier at time s and s+1, or (X(s)X(s+1))=(X(s)X(s  +1)/2. In fact, all sites can be the update center with equal
+1)), C(s) will be zero. Thus,C(s) can show whether chance at timsif the update process is repeated many times
there is correlation betweex(s) and also give a measure of from the initial state. Due to the randomness of the updated
the strength of the correlation. Because of the randomness gfjrvivability X(s+ 1) can also take any integer from 1 lto
the survivability at each siteX(s) can be 1,2,...L, with  However, the distribution ofX(s+1) is peaked atX(s)

whensis large, se¢13] for detail. With the update going on,

! " " " the width of the distribution becomes more and more nar-

A e

W g rower. When the width becomes narrow enoug(s)X(s
P vt +1)) will turn out to be (X3(s))=(2L?+3L+1)/6. So,
08 | ¢ 1 C(s) will approach (2—1)/12 for larges. In above defini-

tion for C(s), however, the neighboring relation between
X(s) andX(s+1) cannot be realized once the numbering for
the sites is given. Due to the periodic boundary conditions
adopted in the model, one of the nearest neighbors of the site
with numbering 1 is the one numberéd To overcome this
shortcoming, one can introduce anentational shorter dis-
o i e L=200 1 tanceA(s) betweenX(s) andX(s+1). Imagine thel sites
with numbering 1,2...,L are placed on a circle in clock-
wise order. TherA(s)| is the shorter distance between the
__ L=50 l two sites on the circle. IiX(s+1) is reached along the
shorter curve fronX(s) in clockwise directionA(s) is posi-
tive. OtherwiseA(s) is negative. For definiteness, one can
assume—-L/2<A(s)<L/2. With A(s), one can use

06 Hi:

C(s)

0.2

0 500 1000 1500 2000

S X' (s+1)=X(s)+A(s) (2)

FIG. 2. The correlation functiol©(s) as a function ofs for  in place ofX(s+1) in the definition ofC(s). SinceX’(s)
lattice sizeL =50, 100, and 200 for the same model as in Fig. 1. can cross thénonexisting boundary between 1 and and
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reflect the neighboring relation wit(s), the effect of peri- creases with the lattice size Since only 500,000 simulation
odic boundary conditions on the correlation can be taken int@vents are used in current study, there shows the effect of
account[In the simulation of the BS model numbering the fluctuations in the figure.

sites with integer numbers 1,2. . L is necessary, but the ~ The correlation betweeK(s) can be investigated for the
start position can be arbitrary. Different numbering scheméandom neighbor model for biological evolution in the same
will give the same results foE(s), as physically demanded. Way. For simplicity only the case witK=3 is taken into
This in return is also an indication of the equivalence of all&ccount. The generalization to other cases is st_ra|ghtforward.
sites in the presence of periodic boundary conditpfie  First, one can have a look on hoi(s) changes with update.
normalize the dependence 6f(s) on the size of the one- X(s) is shown as a function ofin the upper part of Fig. 3
dimensional array, we can renormaligés) by (L2—1)/12. This plot may look as a random scatter of points at first sight.

In the following, we use a normalized definition 6{s): But it is not. A close look reveals correlationg(s) often
’ ) has almost same value for several consecutive or almost con-

(X(S)X'(5+ 1)) —(X(S)HX'(s+1)) secutives values. However, no obvious plateaulike part can
(L2=1)/12 (3 be seen in the figure, showing the difference between the two
versions of the BS modeC(s) is also studied and shown in
In current studyX(s) and A(s) are determined from the lower part of Fig. 3 as a function effor the lattice size
Monte Carlo simulations, and 500 000 simulation events aré =200. In the random neighbor version of the BS model,
used to determine the averages involved. For each everitites numbered with 1 aridare no longer neighbors. So, in
2000 updates are performed from an initial state with randontn€ calculation o2(s) from Eq.(3), X(s+1) is used instead
barriers on the sites uniformly distributed (@, 1). The nor- ~ 0f X’(s+1). The counterpart for the nearest neighbor model
malized correlation functio€(s) is shown as a function of 1S also drawn in the figure for comparison. One can see that
in Fig. 2 for L=>50, 100, and 200. One can see th4s) is the saturating value is much smaller than in the case of the

a monotonously increasing function of tinseAs in our na-  local neighbor version of the model.

ive considerationC(s) is very small in the early stage of From the dlscusslons qbove_ one can see that the correla-
updates and becomes larger and larger for lasgiedicating ~ tion between the sites with minimum barrier may play an
the increase of the strength of correlation between the sitdgPortant role in investigating SOC. The power-law distri-
with minimum barrier at different times. The behavior of Putions for the size and lifetime of the “avalanches™ to-
C(s) with s exhibits different characteristics for small and 9€ther with the different kind of correlation may be used as
larges. C(s) increases witrs very quickly for smalls, but ~ criteria for SOC.

the rate becomes quite slow after a knee point. The knee This work was supported in part by the NNSF in China
point appears earlier for smaller showing the existence of and NSF in Hubei, China. One of the auth@@sB.Y.) would

a finite-size effect. Also, the seemly saturating valu€¢s) like to thank the Alexander von Humboldt Foundation of
depends on the size of the lattice, or more clearly, it in- Germany for the financial support granted to him.

C(s)=

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev38, 364 [11] H. Flyvbjerg, Phys. Rev. LetZ6, 940(1996.

(1987; Phys. Rev. Lett59, 381(1987. [12] M. Paczuski, S. Maslov, and P. Bak, Europhys. L&f#, 97
[2] K. Chen, P. Bak, and S.P. Obukhov, Phys. Rev43 625 (1994.

(1991). [13] M. Paczuski, S. Maslov, and P. Bak, Phys. Rev5E 414
[3] P. Bak, K. Chen, and M. Creuts, Natufeondon 342 780 (1996.

(1989. [14] A. Corral and M. Paczuski, Phys. Rev. Le88, 572(1999.
[4] K. Sneppen, Phys. Rev. Le@&9, 3539(1992; K. Sneppen and [15] J. de Boer, A.D. Jackson, and Tilo Wetig, Phys. Re\6E

M.H. Jensenibid. 70, 3833(1993; 71, 101(1993. 1059(1995.
[5] P. Bak and K. Chen, Sci. An264(1), 46 (1991). [16] P. Bak and K. Sneppen, Phys. Rev. L&, 4083(1993.
[6] K. Chen and P. Bak, Phys. Lett. P40, 46 (1989. [17] H. Flyvbjerg, P. Bak, and K. Sneppen, Phys. Rev. L@étt.
[7] P. Bak, K. Chen, and C. Tang, Phys. Lett1A7 297 (1990. 4087(1993.
[8] A. Sornette and D. Sornette, Europhys. L&tt197 (1989. [18] J. de Boer, B. Derrida, H. Flyvbjerg, A.D. Jackson, and T.
[9] D. Sornette, Phys. Rev. Leff2, 2306(1994). Wettig, Phys. Rev. Lett73, 906 (1994).

[10] G. Canelli, R. Cantelli, and F. Cordero, Phys. Rev. L&f. [19] Yu.M. Pis’'mak, J. Phys. A28, 3109(1995.
2307 (1994. [20] Yu.M. Pis'mak, Phys. Rev. B6, R1326(1997.



